About the Author(s)


J.J. van der Linde Email
Department of Computer Science, University of South Africa, South Africa

I.D. Sanders
Department of Computer Science, University of South Africa, South Africa

How to cite this abstract: Van der Linde, J.J. & Sanders, I.D., 2016, ‘Die vergroting van gerigte grafieke om te verseker dat alle nodusse in siklusse voorkom’, Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie 35(1), a1407. http://dx.doi.org/10.4102/satnt.v35i1.1407

Note: A selection of conference proceedings: Student Symposium in Science, 29–30 October 2015, University of the Free State, South Africa. Organising committee: Mr Rudi Pretorius and Ms Andrea Lombard (Department of Geography, University of South Africa); Dr Hertzog Bisset (South African Nuclear Energy Corporation (NECSA); Dr Ernie Langner and Prof Jeanet Conradie (Department of Chemistry, University of the Free State).

Referaatopsomming

Die vergroting van gerigte grafieke om te verseker dat alle nodusse in siklusse voorkom

J.J. van der Linde, I.D. Sanders

Copyright: © 2016. The Author(s). Licensee: AOSIS.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Enlarging directed graphs to ensure that all nodes are contained in cycles. This research expands on previous research into a graph-matching problem, known as the ‘shoe-matching problem’, and the role of a graph-enlargement algorithm in finding this solution. Multiple new algorithms focusing on graph enlargement and the shoe-matching problem are presented with positive results overall.

Die vergroting van grafieke het voorheen neergekom op vergroting deur middel van sybyvoeging. Hierdie navorsing beskou die probleem vanuit ’n ander oogpunt, naamlik die vergroting van grafieke deur middel van nodusbyvoeging. Die vergroting van grafieke word toegepas om ’n passingsprobleem, in besonder die ‘skoenpassingsprobleem’, op te los.

In die navorsing word drie nuwe algoritmes vir grafiekvergroting voorgestel, naamlik matriksvergroting, subgrafiekvergroting en kostebesparende vergroting. Die algoritmes verbeter die effektiwiteit en doeltreffendheid van die bestaande algoritme wat deur Sanders (2013) voorgestel is.

Die kostebesparende algoritme is, afgesien van enkele wysigings, nou verwant aan die oorspronklike algoritme van Sanders (2013). Die algoritme is gemoeid met die minimalisering van unieke plekhouernodusse. Die unieke getal plekhouernodusse en die totale getal plekhouernodusse wat benodig word, kan verskil. Indien ’n plekhouernodus deel vorm van meer as een siklus, byvoorbeeld drie siklusse, moet die enkele unieke plekhouernodus drie keer aangeskaf word om te verseker dat alle siklusse bevredig word. Ons het in ons navorsing bevind dat die volgende metodes die getal unieke plekhouernodusse kan verminder:

  • Geïsoleerde nodusse moenie aan groter grafiekstrukture gekoppel word nie, tensy dit die mees optimale aksie is. Oor die algemeen is dit meer koste-effektief om ’n plekhouernodus direk aan die geïsoleerde nodus te koppel.
  • Brugnodusse moet sover moontlik vermy word. Met die oog hierop, moet komponente apart vergroot word.
  • As spesifieke nodusse in veelvuldige siklusse herhaal word, kan die herhalings saamgepers word om te vermy dat dieselfde nodusse verskeie kere gekoop word.

Die subgrafiek-vergrotingsalgoritme isoleer alle siklusse indien die nodusse slegs een maal in die voorgenoemde siklusse voorkom. Met ander woorde, ’n stel siklusse word eenkant gesit en daar is geen nodusherhalings in die stel siklusse nie. Hierdie optimale keuse van siklusse vereis ’n kombinatoriese algoritme om al die beskikbare moontlikhede te evalueer. Die optimale stel siklusse word eenkant geplaas en as ‘voltooid’ gemerk. Die res van die grafiek konstrueer ’n subgrafiek van die oorspronklike, en word dan normaalweg deur die kostebesparingsalgoritme vergroot.

Die matriksvergrotingsalgoritme bied ’n nuwe en innoverende metode van grafiekvergroting. Die algoritme kan ook baie NP-volledige subprosesse oorslaan, wat tot ‘n hoë doeltreffendheid lei. Die algoritme herskryf die adjunksiematriks van die grafiek na ’n permutasiematriks om te verseker dat die grafiek slegs uit disjunkte siklusse bestaan. Die proses beskik oor die vermoë om groot grafieke (1000+ nodusse) binne sekondes op ’n moderne persoonlike rekenaar te vergroot.

Die doel van die navorsing was om nuwe en meer effektiewe algoritmes te ontwerp waarmee grafieke vergroot word. Daar is bevind dat die nuwe metodes twee tot drie keer meer doeltreffend is as Sanders (2013) se oorspronklike grafiek-vergrotingsalgoritme.

Literatuurverwysings

Sanders, I., 2013, ‘Cooperating to buy shoes: An application of picking cycles in directed graphs’, in Proceedings of the South African Institute of Computer Scientists and Information Technologists (Theme: ‘A Connected Society’), East London, pp. 8–16. http://dx.doi.org/10.1145/2513456.2517086


Reader Comments

Before posting a comment, read our privacy policy.

Post a comment (login required)

Crossref Citations

No related citations found.